THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Жизнь как биологический процесс едина во всей биосфере, и она существует на основании фундаментальных принципов. А потому разные формы жизни, а также различные структурные компоненты представителей биологических видов, имеют значительные сходства. Отчасти они обеспечиваются общностью происхождения или выполнением похожих функций. В данном контексте следует детально разобрать, в чем проявляется сходство митохондрий и хлоропластов, хотя с первого взгляда эти клеточные органеллы имеют мало общего.

Митохондрии

Митохондриями называются двухмембранные клеточные структуры, ответственные за энергообеспечение ядра и органелл. Их находят в растений, грибов и животных. Они отвечают за то есть конечное усваивание кислорода, из чего в результате биохимического превращения извлекается энергия для синтеза макроэргов. Достигается это путем передачи заряда через мембрану митохондрий и ферментативное окисление глюкозы.

Хлоропласты

Хлоропластами называются клеточные органеллы растений, некоторых фотосинтезирующих бактерий и протистов. Это клеточные двухмембранные структуры, в которых синтезируется глюкоза благодаря использованию энергии солнечного света. Этот процесс достигается передачей энергии фотона и протеканием ферментативных реакций, связанных с передачей заряда через мембрану. Результатом фотосинтеза является утилизация углекислого газа, синтез глюкозы и высвобождение молекулярного кислорода.

Сходство митохондрий и хлоропластов

Хлоропласты и митохондрии являются клеточными органеллами с двумя мембранами. Первым слоем они ограждаются от цитоплазмы клетки, а второй формирует многочисленные складки, на которых протекают процессы передачи зарядов. Принцип их работы схож, однако направлен в разные стороны. У митохондрий происходит ферментативное с использованием кислорода, а в качестве продуктов реакции выступает углекислый газ. В результате превращения также синтезируется энергия.

В хлоропластах наблюдается обратный процесс — синтез глюкозы и высвобождение кислорода из углекислого газа с расходом энергии света. Это принципиальное различие между данными органеллами, но отличается лишь направление процесса. Его электрохимия практически идентична, хотя для этого используются разные посредники.

Также можно детально рассмотреть, в чем проявляется сходство митохондрий и хлоропластов. Оно заключается в автономности органелл, так как они имеют даже свою молекулу ДНК, хранящую коды структурных белков и ферментов. В обеих органеллах имеется свой автономный аппарат биосинтеза белка, потому хлоропласты и митохондрии способны самостоятельно обеспечивать себя необходимыми ферментами и восстанавливать свою структуру.

Резюме

Главное сходство митохондрий и хлоропластов — их автономия внутри клетки. Отделившись от цитоплазмы двойной мембраной и имея свой собственный комплекс ферментов биосинтеза, они ни в чем не зависят от клетки. Также они имеют свой собственный набор генов, а потому могут считаться отдельным живым организмом. Существует филогенетическая теория, что на ранних этапах развития одноклеточной жизни митохондрии и хлоропласты были простейшими прокариотами.

Она гласит, что в определенный период произошло их поглощение другой клеткой. Из-за наличия отдельной мембраны они не были расщеплены, став донором энергии для «хозяина». В ходе эволюции за счет обмена генами у доядерных организмов произошло встраивание ДНК хлоропластов и митохондрий в геном клетки-хозяина. С этого момента клетка сама была способна осуществить сборку этих органелл, если они не были переданы ей в ходе митоза.

  • 6.Происхождение, строение и функции клеточной оболочки.
  • 7.Вакуоли. Состав и свойства клеточного сока. Осмотическое давление, тургор и плазмолиз.
  • 8.Клеточное ядро, его химический состав, строение, роль в жизнедеятельности клетки.
  • 9. Химические вещества клетки, их значение, локализация.
  • 10. Запасные формы углеводов в клетке.
  • 15. Запасные формы белков и жиров в клетке
  • 11. Растительные ткани, принципы классификации.
  • 12. Образовательные ткани: цитологические особенности, происхождение, локализация.
  • 13. Покровные ткани древесных частей растения: цитологические особенности, происхождение, локализация.
  • 14. Покровные ткани неодревесневших частей растения: цитологические особенности, происхождение, локализация.
  • 16. Основные ткани: цитологические особенности, происхождение, локализация.
  • 17. Механические ткани: цитологические особенности, происхождение, локализация.
  • 18. Выделительные ткани: цитологические особенности, происхождение, локализация.
  • 19. Токи веществ в растении. Проводящие ткани: цитологические особенности, происхождение, локализация.
  • 20. Сосудисто-волокнистые пучки: происхождение, строение, локализация в растениях.
  • 21. Анатомическое строение корня однодольных растений (одно- и многолетних).
  • 22. Анатомическое строение корня двудольных растений (одно- и многолетних).
  • 30. Морфологическое строение корня. Функции и метаморфозы корня.
  • 23. Анатомическое строение стеблей травянистых и древесных однодольных растений.
  • 28. Анатомическое строение различных типов листьев.
  • 33. Лист, его части. Функции и метаморфозы. Морфологическая характеристика листьев.
  • 29. Диагностические микроскопические признаки вегетативных органов, используемых в анализе лекарственного растительного сырья.
  • 32. Строение, расположение почек. Конусы нарастания.
  • 39. Микроспорогенез и формирование мужского гаметофита у покрытосеменных.
  • 40. Мегаспорогенез и формирование женского гаметофита у покрытосеменных.
  • 41. Опыление и оплодотворение у покрытосеменных.
  • 42. Образование, строение и классификация семян.
  • 46. Принципы классификации организмов. Искусственные, естественные, филогенетические системы. Современная классификация органического мира. Таксономические единицы. Вид как единица классификации.
  • 1. Надцарство доядерных организмов (Procaryota).
  • 2. Надцарство ядерных организмов (Eucaryota)
  • Различия представителей царств животные, грибы и растения:
  • 47. Классификация водорослей. Строение, размножение зеленых и бурых водорослей. Значение водорослей в народном хозяйстве и медицине.
  • 48. Грибы. Общая биологическая характеристика, классификация, значение. Хитридиомицеты и зигомицеты.
  • 49. Грибы. Общая биологическая характеристика, классификация, значение. Аскомицеты.
  • 50. Базидиальные и несовершенные грибы. Особенности биологии. Применение в медицине.
  • 3 Подкласса:
  • 51. Лишайники. Общая биологическая характеристика, классификация, значение.
  • 52. Отдел Моховидные. Общая биологическая характеристика, классификация, значение.
  • 53. Отдел Плауновидные. Общая биологическая характеристика, классификация, значение.
  • 54. Отдел Хвощевидные. Общая биологическая характеристика, классификация, значение.
  • Отдел голосеменные
  • 58. Главнейшие системы покрытосеменных. Система а.Л. Тахтаджяна.
  • 59. Класс магнолиопсиды. Характеристика основных порядков подкласса магнолииды.
  • 60. Подкласс Ранункулиды. Характеристика порядка Лютиковые.
  • 61. Подкласс Ранункулиды. Характеристика порядка Маковые.
  • 62. Подкласс Кариофиллиды. Характеристика порядка Гвоздичные.
  • 63. Подкласс Кариофиллиды. Характеристика порядка Гречишные.
  • 64. Подкласс Гамамелидиды. Характеристика порядка Буковые.
  • 65. Подкласс Дилленииды. Характеристика порядков: Тыквенные, Каперсовые, Фиалковые, Чайные.
  • 66. Подкласс Дилленииды. Характеристика порядков: Подкласс Дилленииды. Характеристика порядков: Первоцветные, Мальвоцветные.
  • 67. Подкласс Дилленииды. Характеристика порядков: Крапивные, Молочайные.
  • 68. Подкласс Дилленииды. Характеристика порядков: Ивовые, Вересковые.
  • 69. Подкласс Розиды. Характеристика порядков: Камнеломковые, Розоцветные.
  • 74. Подкласс Ламииды. Характеристика порядков: Горечавковые.
  • 78. Подкласс Астериды. Характеристика порядка Сложноцветные. Подсемейство Трубкоцветные.
  • 79. Подкласс Астериды. Характеристика порядка Сложноцветные. Подсемейство Языкоцветные.
  • 80. Подкласс Лилииды. Характеристика порядков Амариллисовые, Диоскорейные.
  • 81. Подкласс Лилииды. Характеристика порядков: Лилейные, Спаржевые.
  • 82. Подкласс Лилииды. Характеристика порядков: Орхидные, Осоковые.
  • 83. Подкласс Лилииды. Характеристика порядка Злаки.
  • 84. Подкласс Арециды. Характеристика порядков: Пальмы, Аронниковые.
  • 5.Пластиды, митохондрии, рибосомы. Происхождение, строение, функции.

    Пластиды - органоиды гиалоплазмы, характерные только для клеток растений. В зависимости от наличия пигментов различают 3 типа пластид: хлоропласты (зеленые), хромопласты (оранжевые, желтые, красные), лейкопласты (бесцветные). Рассмотрим их строение на примере хлоропластов . Размеры и число хлоропластов в клетке варьирует в зависимости от вида растения. Обычно это овальные или линзовидные тельца, длиной 4-7 мкм, толщиной 1-3 мкм. Число их в клетке может быть от 5-7 (у тополя в эпидерме) до 325 (в ли­стьях картофеля). Снаружи хлоропласты покрыты оболочкой из 2 мембран, внутренняя может образовывать в полость пластиды немногочисленные вы­росты. Под оболочкой находится тело пластиды - строма , структурной едини­цей которой являются тилакоиды - плоские мешковидные мембранные об­разования, содержащие пигменты. Тилакоиды, собранные в виде стопки, называются граны . На мембранах гран протекает световая фаза фотосинтеза, на мембранах тилакоидов стромы - темновая. В строме хлоропластов имеются также пластоглобулы - округлые включения жирных масел, рибосомы, ДНК, иногда крахмальные зерна, белковые кри­сталлы, микротрубочки.

    Пигменты, входящие в состав пластид, относятся к 3 классам: хлорофиллы, каротиноиды, фикобиллины. Хлорофиллы - а, b, с, d и т.д. отличаются друг от друга спектрами поглощения; ос­новным светоулавливающим пигментом является хлорофилл "а", а дополни­тельными - "b", "c", "d". К каротиноидам относятся каротины и ксантофиллы, также участвующие в фотосинтезе в качестве дополнительных пигментов. Кроме того, они придают окраску лепесткам многих растений (тюльпан, оду­ванчик и др.), плодов (шиповник, томаты, рябина), корнеплодов (морковь, свекла и др.) Фикобиллины - пигменты водорослей и цианобактерий (фикоэритрины у красных водорослей).

    В хлоропластах содержатся хлорофиллы и каротиноиды, но в различных соотношениях. Например, в листьях шпината Хлa :Хлb :Кар:Кс содержат­ся в соотношении 11:5:2:1 (Зейбольц, 1941). Хромопласты содержат каротиноиды, обычно растворенные в пластоглобулах. Отличаются меньшими размерами и слабо развитой внутренней мем­бранной системой. Лейкопласты - бесцветные, не содержащие пигментов пластиды, в связи с чем в них мало или нет тилакоидов. Их функция - синтез и накопление запас­ных питательных веществ: крахмала (амилопласты), реже белка (протеопласты), жирных масел (олеопласты). В онтогенезе все типы пластид способны превращаться друг в друга: лейко­пласты - > хлоропласты - > хромопласты. Иногда - хлоропласты - > лейкопласты; лейкопласты - > хромопласты. Считают, что хромопласты - этап старения пластид.

    Таким образом, при помощи пластид растения выполняют свою космическую роль и обеспечивают солнечной энергией процессы образования орга­нических веществ

    Митохондрии - небольшие тельца палочковидной формы, ограниченные двумя мембранами. От внутренней мембраны митохондрии отходят многочисленные складки - кристы, на их стенках располагаются разнообразные ферменты, с помощью которых осуществляется синтез высокоэнергетического вещества - аденозинтрифосфорной кислоты (АТФ). В зависимости от активности клетки и внешних воздействий митохондрии могут перемещаться, изменять свои размеры, форму. В митохондриях найдены рибосомы, фосфолипиды, РНК и ДНК. С присутствием ДНК в митохондриях связывают способность этих органоидов к размножению путем образования перетяжки или почкованием в период деления клетки, а также синтез части митохондриальных белков.

    Рибосомы встречаются во всех типах клеток - от бактерий до клеток многоклеточных организмов. Это округлые тельца, состоящие из рибонуклеиновой кислоты (РНК) и белков почти в равном соотношении. В их состав непременно входит магний, присутствие которого поддерживает структуру рибосом. Рибосомы могут быть связаны с мембранами эндоплазматической сети, с наружной клеточной мембраной или свободно лежать в цитоплазме. В них осуществляется синтез белков. Рибосомы кроме цитоплазмы встречаются в ядре клетки. Они образуются в ядрышке и затем поступают в цитоплазму.

    Рибосомы в клетках растений обнаружены в 1953 году Робинсоном и Броуном. Мелкие 100-150А, округлой формы, состоят из 2 частей (субъединиц) - большой и малой, объединенных предположительно Mg 2+ . В состав большой субъединицы входит одна молекула РНК высокого молекулярного веса (235) и одна молекула РНК меньшего (55) молекулярного веса и около 35 молекул бел­ков разного характера. В состав малой - молекула РНК и около 20 молекул различных белков. В молодых клетках расположены в цитоплазме свободно, в дифференци­рованных - прикреплены к поверхности наружной мембраны эндоплазматической сети группами (от 5 до 20), образуя полисомы . Между собою их связы­вает и РНК. РНК рибосом и транспортная РНК - цитоплазматического происхождения, инфор­мационная - ядерного, образуется на части молекулы ДНК ядра. Она и опре­деляет характер синтезируемого белка. Главная функция рибосом - синтез белка.

    1. Заполните таблицу 15 «Сравнительная характеристика митохондрий и хлоропластов». При наличии признака поставьте в соответствующую ячейку знак + . Сделайте вывод о причинах сходства и причинах различий митохондрий и хлоропластов.

    2. Анализ «слепых» препаратов.

    Практическая часть

    Таблица 15.

    Сравнительная характеристика митохондрий и хлоропластов

    ПРЕПАРАТ № 6 Хондриососмы в клетках печени амфибии

    Митохондрии в клетках печени амфибии. Фиксация Са-формолом; окраска по Альтману.

    При малом увеличении видны располагающиеся рядами крупные многоугольной округлой формы печеночные клетки с тонкими клеточными границами. Между печеночными клетками заметны широкие кровеносные капилляры, в которых находятся клетки крови.

    При большом увеличении на желтоватом фоне цитоплазмы гепатоцитов видны равномерно расположенные митохондрии розово-красного цвета, имеющие форму округлых зерен или палочек. Часть митохондрий зернистой формы представляет собой поперечные разрезы палочковидных митохондрий.

    Рис. 51. Митохондрии в клетках печени амфибии. 1 – цитоплазма; 2 – гепатоциты; 3 – митохондрии; 4 – короткие цепочки митохондрий.

    Рибосомы: строение и функции

    Определение 1

    Замечание 1

    Основной функцией рибосом является синтез белка.

    Субъединицы рибосом образуются в ядрышке и потом сквозь ядерные поры отдельно друг от друга поступают в цитоплазму.

    Их количество в цитоплазме зависит от синтетической активности клетки и может составлять от сотни до тысяч на одну клетку. Наибольшее количество рибосом может быть в клетках, которые синтезируют протеины. Есть они также в митохондриальном матриксе и хлоропластах.

    Рибосомы различных организмов – от бактерий до млекопитающих – характеризуются подобной структурой и составом, хотя клетки прокариот имеют рибосомы меньшего размера и в большем количестве.

    Каждая субъединица состоит из нескольких разновидностей молекул рРНК и десятков разновидностей белков приблизительно в одинаковой пропорции.

    Маленькая и большая субъединицы находятся в цитоплазме одиночно до тех пор, пока не будут задействованы в процессе биосинтеза белка. Они объединяются друг с другом и молекулой иРНК в случае необходимости синтеза и снова распадаются, когда процесс окончен.

    Молекулы иРНК, которые были синтезированы в ядре, попадают в цитоплазму к рибосомам. Из цитозоля молекулы тРНК поставляют аминокислоты к рибосомам, где с участием ферментов и АТФ синтезируются белки.

    Если с молекулой иРНК соединяются несколько рибосом, то образуются полисомы , которые содержат от 5 до 70 рибосом.

    Пластиды: хлоропласты

    Пластиды – характерные только для растительных клеток органоиды, отсутствующие в клетках животных, грибов, бактерий и цианобактерий.

    Клетки высших растений содержат 10-200 пластид. Их размер от 3 до 10 мкм. Большинство из них имеют форму двояковыпуклой линзы, но иногда могут быть в форме пластинок, палочек, зёрен и чешуек.

    В зависимости от присутствующего в пластиде пигмента пигмента эти органоиды делят на группы:

    • хлоропласты (гр. сhloros – зелёный) – зелёного цвета,
    • хромопласты – жёлтого, оранжевого и красноватого цвета,
    • лейкопласты – бесцветные пластиды.

    Замечание 2

    По мере развития растения пластиды одного типа способны преобразоваться в пластиды другого типа. Такое явление широко распространено в природе: изменение окраски листьев, меняется окраска плодов в процессе созревания.

    Большинство водорослей вместо пластид имеют хроматофоры (обычно в клетке он один, имеет значительные размеры, имеет форму спиральной ленты, чаши, сетки или звёздчатой пластинки).

    Пластиды имеют достаточно сложное внутреннее строение.

    Хлоропласты имеют свои ДНК, РНК, рибосомы, включения: зёрна крахмала, капли жира. Снаружи хлоропласты ограничены двойной мембраной, внутреннее пространство заполнено стромой – полужидким веществом), которое содержит граны - особенные, свойственные лишь хлоропластам структуры.

    Граны представлены пакетами плоских круглых мешочков (тилакоидов ), которые сложены как столбик монет перпендикулярно широкой поверхности хлоропласта. Тилакоиды соседних гран между собой соединяются в единую взаимосвязанную систему мембранными каналами (межмембранными ламелами).

    В толще и на поверхности гран в определённом порядке расположен хлорофилл .

    Хлоропласты имеют разное количество гран.

    Пример 1

    В хлоропластах клеток шпината содержится по 40-60 гран.

    Хлоропласты не прикреплены в определённых местах цитоплазмы, а могут изменять своё положение или пассивно, или активно перемещаются ориентировано к свету (фототаксис ).

    Особенно чётко активное движение хлоропластов наблюдается при значительном повышении одностороннего освещения. В таком случае хлоропласты скопляются у боковых стенок клетки, а к ориентируются ребром. При слабом освещении хлоропласты ориентируются к свету более широкой стороной и располагаются вдоль стенки клетки, обращённой к свету. При средней силе освещения хлоропласты занимают срединное положение. Таким образом достигаются наиболее благоприятные условия для процесса фотосинтеза.

    Благодаря сложной внутренней пространственной организации структурных элементов хлоропласты способны эффективно поглощать и использовать лучистую энергию, а также происходит разграничение во времени и пространстве многочисленных и разнообразных реакций, составляющих процесс фотосинтеза. Реакции этого процесса, зависимые от света, происходят лишь в тилакоидах, а биохимические (темновые) реакции – в строме хлоропласта.

    Замечание 3

    Молекула хлорофилла очень подобна молекуле гемоглобина и отличается в основном тем, что в центре молекулы гемоглобина расположен атом железа, а не атом магния, как у хлорофилла.

    В природе существует четыре типа хлорофилла: a, b, c, d.

    Хлорофиллы a и b содержатся в хлоропластах высших растений и зелёных водорослей, диатомовые водоросли содержат хлорофиллы a и c, красные – a и d . Хлорофиллы a и b изучены лучше других (впервые их выделил в начале ХХ столетия российский учёный М.С. Цвет).

    Кроме них существует четыре вида бактериохлорофиллов – зелёных пигментов зелёных и пурпурных бактерий: a, b, c, d.

    Большинство бактерий, способных к фотосинтезу, содержат бактериохлорофилл а , некоторые – бактериохлорофилл b, зелёные бактерии – c и d.

    Хлорофилл достаточно эффективно поглощает лучистую энергию и передаёт её другим молекулам. Благодаря этому хлорофилл – единственное вещество на Земле, способное обеспечивать процесс фотосинтеза.

    Пластидам, как и митохондриям, свойственна в определённой степени автономность внутри клетки. Они способны размножаться в основном путём деления.

    Наряду с фотосинтезом в хлоропластах происходит синтез других веществ, таких как белки, липиды, некоторые витамины.

    Благодаря наличию в пластидах ДНК, они играют определённую роль в передаче признаков по наследству (цитоплазматическая наследственность ).

    Митохондрии – энергетические центры клетки

    В цитоплазме большинства животных и растительных клеток содержатся достаточно большие овальные органеллы (0,2 – 7 мкм), покрытые двумя мембранами.

    Митохондрии называют силовыми станциями клеток, потому что их основная функция – синтез АТФ. Митохондрии превращают энергию химических связей органических веществ на энергию фосфатных связей молекулы АТФ, которая является универсальным источником энергии осуществления для всех процессов жизнедеятельности клетки и целого организма. АТФ, синтезированная в митохондриях, свободно выходит в цитоплазму и дальше идёт к ядру и органеллам клетки, где используется её химическая энергия.

    Митохондрии содержатся почти во всех эукариотических клетках, за исключением анаэробных простейших и эритроцитов. Они расположены в цитоплазме хаотично, но чаще их можно определить возле ядра или в местах с высокой потребностью в энергии.

    Пример 2

    В мышечных волокнах митохондрии расположены между миофибриллами.

    Эти органеллы могут изменять свою структуру и форму, а также двигаться внутри клетки.

    Количество органелл может изменяться от десятков до нескольких тысяч в зависимости от активности клетки.

    Пример 3

    В одной клетке печени млекопитающих содержится более 1000 митохондрий.

    Структура митохондрий в некоторой мере отличается у различных типов клеток и тканей, но все митохондрии имеют принципиально одинаковое строение.

    Образуются митохондрии путём деления. Во время деления клетки они более-менее равномерно распределяются между дочерними клетками.

    Внешняя мембрана гладкая, не образует никаких складок и выростов, легко проницаема для многих органических молекул. Содержит ферменты, которые превращают вещества на реакционно способные субстраты. Участвует в образовании межмембранного пространства.

    Внутренняя мембрана плохо проницаема для большинства веществ. Образует много выпячиваний внутрь матрикса – крист . Количество крист в митохондриях разных клеток неодинакова. Их может быть от нескольких десятков до нескольких сотен, причём особенно много их в митохондриях клеток, которые активно функционируют (мышечные). Содержит белки, которые участвуют в трёх важнейших процессах:

    • ферменты, катализирующие окислительно-восстановительные реакции дыхательной цепи и транспорта электронов;
    • специфические транспортные белки, участвующие в образовании катионов водорода в межмембранном пространстве;
    • ферментативный комплекс АТФ-синтетазы, который синтезирует АТФ.

    Матрикс – внутреннее пространство митохондрии, ограниченное внутренней мембраной. Он содержит сотни различных ферментов, которые участвуют в разрушении органических веществ вплоть до углекислого газа и воды. При этом освобождается энергия химических связей между атомами молекул, которая в дальнейшем превращается на энергию макроэргических связей в молекуле АТФ. В матриксе также есть рибосомы и молекулы митохондриальной ДНК.

    Замечание 4

    Благодаря ДНК и рибосомам самих митохондрий обеспечивается синтез белков, необходимых самой органелле, и которые в цитоплазме не образуются.

    Задания с выбором 3-х верных ответов из 6-и.

    1. Клетки каких организмов не могут поглощать крупные частицы пищи путем фагоцитоза?

    2) цветковых растений

    4) бактерий

    5) лейкоцитов человека

    6) инфузорий

    2. Плотная оболочка отсутствует в клетках тела

    1) бактерий

    2) млекопитающих

    3) земноводных

    6) растений

    3. Цитоплазма выполняет в клетке ряд функций:

    1) является внутренней средой клетки

    2) осуществляет связь между ядром и органоидами

    3) выполняет роль матрицы для синтеза углеводов

    4) служит местом расположения ядра и органоидов

    5) осуществляет передачу наследственной информации

    6) служит местом расположения хромосом в клетках эукариот

    4. Каково строение и функции рибосом?

    1) участвуют в реакциях окисления

    2) осуществляют синтез белка

    3) отграничены от цитоплазмы мембраной

    4) состоят из 2-х субъединиц

    5) располагаются в цитоплазме и на мембранах ЭПС

    6) размещаются в комплексе Гольджи

    5. Какие функции выполняет ЭПС в растительной клетке?

    1) участвует в сборке белка из аминокислот

    2) обеспечивает транспорт веществ

    3) образует первичные лизосомы

    4) участвует в фотосинтезе

    5) синтезирует некоторые углеводы и липиды

    6) осуществляет связь с комплексом Гольджи

    6. Каково строение и функции митохондрий?

    1) расщепляют биополимеры до мономеров

    2) характеризуются анаэробным способом получения энергии

    4) имеют ферментативные комплексы, расположенные на кристах

    5) окисляют органические вещества с образованием АТФ

    6) имеют наружную и внутреннюю мембраны

    7. Чем митохондрии отличаются от хлоропластов?

    1) в них происходит синтез молекул АТФ

    2) в них окисляются органические вещества до углекислого газа и воды

    3) синтез АТФ идет с использованием энергии света

    4) энергия, освобождаемая при окислении органических веществ, используется на синтез АТФ

    5) поверхность внутренней мембраны увеличивается за счет складок

    6) поверхность мембран увеличивается за счет образования гран

    8. Какие общие свойства характерны для митохондрий и хлоропластов?

    1) не делятся в течение жизни клетки

    2) имеют собственный генетический материал

    3) являются одномембранными

    5) имеют двойную мембрану

    6) участвуют в синтезе АТФ

    9. В каких структурах клетки эукариот расположены молекулы ДНК?

    1) цитоплазма

    3) митохондрии

    4) рибосомы

    5) хлоропласты

    6) лизосомы

    10. Какие функции выполняет в клетке ядро?

    1) обеспечивает поступление веществ в клетку

    2) служит местом локализации хромосом

    3) с помощью молекул-посредников участвует в синтезе белка

    4) участвует в процессе фотосинтеза

    5) в нем органические вещества окисляются до неорганических

    6) участвует в образовании хроматид

    11. Какие процессы жизнедеятельности происходят в ядре клетки?

    1) образование веретена деления

    2) формирование лизосом

    3) удвоение ДНК

    4) синтез иРНК

    5) образование митохондрий

    6) формирование субъединиц рибосом

    12. Основные функции ядра

    1) синтез ДНК

    2) окисление органических веществ

    3) синтез молекул РНК

    4) поглощение клеткой веществ из окружающей среды

    5) образование органических веществ из неорганических

    6) образование большой и малой единиц рибосом

    13. Каковы особенности строения и функции ядра?

      оболочка состоит из одной мембраны с порами

      в ядре происходит синтез ядерных белков

      в ядрышках синтезируются субъединицы рибосом

      размеры ядра – около 10 мкм

      ядерная оболочка входит в единую мембранную систему клетки

      в ядре происходит синтез АТФ

    14. Клетки каких организмов имеют клеточную стенку?

    1) животные

    2) растения

    3) человек

    6) бактерии

    15. Укажите одномембранные органоиды клетки

      рибосомы

      лизосомы

      пластиды

      комплекс Гольджи

      митохондрии

    16. Укажите немембранные органоиды клетки

      рибосомы

      лизосомы

      комплекс Гольджи

      цитоскелет

      клеточный центр

    Задания на установление соответствия.

    17. Установите соответствие между характеристикой органоида клетки и его видом.

    ХАРАКТЕРИСТИКА ОРГАНОИД

    А) система канальцев, пронизывающих цитоплазму 1) комплекс

    Б) система уплощенных мембранных цилиндров и пузырьков Гольджи

    В) обеспечивает накопление веществ в клетке 2) ЭПС

    Г) на мембранах могут размещаться рибосомы

    Д) участвует в формировании лизосом

    Е) обеспечивает перемещение органических веществ в клетке

    18. Установите соответствие между характеристикой органоида клетки и его видом.

    ХАРАКТЕРИСТИКА ОРГАНОИД

    А) состоит из полостей с пузырьками на концах 1) ЭПС

    Б) состоит из системы канальцев 2) комплекс Гольджи

    В) участвует в биосинтезе белка

    Г) участвует в образовании лизосом

    Д) участвует в обновлении и росте мембран

    Е) осуществляет транспорт веществ

    19. Установите соответствие между строением и функцией клетки и органоидом, для которого они характерны.

    СТРОЕНИЕ И ФУНКЦИИ ОРГАНОИДЫ

    А) расщепляют органические вещества до мономеров 1) лизосомы

    Б) окисляют органические вещества до СО 2 и Н 2 О 2) митохондрии

    В) отграничены от цитоплазмы одной мембраной

    Г) отграничены от цитоплазмы двумя мембранами

    20. Установите соответствие между признаком и органоидом клетки, для которого он характерен

    ПРИЗНАК ОРГАНОИД

    А) состоит из двух субъединиц 1) лизосома

    Б) имеет мембрану 2) рибосома

    В) обеспечивает синтез белков

    Г) расщепляет липиды

    Д) размещается преимущественно на мембране ЭПС

    Е) превращает полимеры в мономеры

    21. Установите соответствие между функцией и органоидом, для которого она характерны.

    ФУНКЦИИ ОРГАНОИДЫ

    А) накапливает воду 1) вакуоль

    Б) содержит кольцевую ДНК 2) хлоропласт

    В) обеспечивает синтез веществ

    Г) содержит клеточный сок

    Д) поглощает энергию света

    Е) синтезирует АТФ

    22. Установите соответствие между строением, функцией и органоидом, для которого они характерны

    СТРОЕНИЕ И ФУНКЦИИ ОРГАНОИД

    А) состоит из 9-и триплетов микротрубочек 1) центриоль

    Б) содержит 9 пар микротрубочек и 2 непарные в центре 2) жгутик эукариот

    В) покрыт мембраной

    Г) отсутствует у высших растений

    Д) отвечает за образование цитоскелета

    Е) имеет в основании базальное тельце

    Задание на определение последовательности

    23. Определите последовательность оседания частей и органоидов клетки в процессе центрифугирования, с учетом их плотности и массы.

    1) рибосомы

    3) лизосомы

    THE BELL

    Есть те, кто прочитали эту новость раньше вас.
    Подпишитесь, чтобы получать статьи свежими.
    Email
    Имя
    Фамилия
    Как вы хотите читать The Bell
    Без спама